Abstract

Hyperbolic metasurfaces, supporting extreme anisotropy of the surface impedance tensor, have recently been explored in nanophotonic systems for robust diffractionless propagation over a surface, offering interesting opportunities for subdiffraction imaging and enhanced Purcell emission. In acoustics, due to the longitudinal nature of sound transport in fluids, these phenomena are forbidden by symmetry, requiring the acoustic surface impedance to be inherently isotropic. Here we show that nonlocalities produced by strong coupling between neighboring impedance elements enable extreme anisotropic responses for sound traveling over a surface, supporting negative phase and energy velocities, as well as hyperbolic propagation for acoustic surface waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call