Abstract

A family of Runge–Kutta (RK) methods designed for better stability is proposed. Authors have optimized the stability of RK method by increasing the stability region by trading some of the higher order terms in the Taylor series. For flow involving shocks, compromising a few higher order terms will not affect convergence rate that is justified with an example. Though this kind of analysis began about three decades ago, most of the papers dealt with classical optimization and ended up in relatively nonoptimal values. Here, authors have overcome that by using evolutionary algorithm (EA), the result is refined using multisection method (MSM). The schemes designed based on this procedure have better stability than the classical RK methods, strong stability RK methods (SSPRK), and low dispersive and dissipative RK methods (LDDRK) of the same number of stages. Authors have tested the schemes on a variety of test cases and found some significant improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.