Abstract

The kinematics of a robot manipulator are described in terms of the mapping connecting its joint space and the 6-dimensional Euclidean group of motions $SE(3)$. The associated Jacobian matrices map into its Lie algebra $\mathfrak{se}(3)$, the space of twists describing infinitesimal motion of a rigid body. Control methods generally require knowledge of an inverse for the Jacobian. However, for an arm with fewer or greater than six actuated joints or at singularities of the kinematic mapping, this breaks down. The Moore--Penrose pseudoinverse has frequently been used as a surrogate but is not invariant under change of coordinates. Since the Euclidean Lie algebra carries a pencil of invariant bilinear forms that are indefinite, a family of alternative hyperbolic pseudoinverses is available. Generalized Gram matrices and the classification of screw systems are used to determine conditions for their existence. The existence or otherwise of these pseudoinverses also relates to a classical problem addressed by ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.