Abstract

Hyperbolic polynomials have their origins in partial differential equations. We show in this paper that they have applications in interior point methods for convex programming. Each homogeneous hyperbolic polynomial p has an associated open and convex cone called its hyperbolicity cone. We give an explicit representation of this cone in terms of polynomial inequalities. The function F(x) = −log p(x) is a logarithmically homogeneous self-concordant barrier function for the hyperbolicity cone with barrier parameter equal to the degree of p. The function F(x) possesses striking additional properties that are useful in designing long-step interior point methods. For example, we show that the long-step primal potential reduction methods of Nesterov and Todd and the surface-following methods of Nesterov and Nemirovskii extend to hyperbolic barrier functions. We also show that there exists a hyperbolic barrier function on every homogeneous cone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.