Abstract

We investigate degenerate cross-diffusion equations, with a rank-deficient diffusion-matrix, modelling multispecies population dynamics driven by partial pressure gradients. These equations have recently been found to arise in a mean-field limit of interacting stochastic particle systems. To date, their analysis in multiple space dimensions has been confined to the purely convective case with equal mobility coefficients. In this article, we introduce a normal form for an entropic class of such equations which reveals their structure of a symmetric hyperbolic–parabolic system. Due to the state-dependence of the range and kernel of the singular diffusive matrix, our way of rewriting the equations is different from that classically used for symmetric second-order systems with a nullspace invariance property. By means of this change of variables, we solve the Cauchy problem for short times and positive initial data in for

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.