Abstract
Signed network embedding methods aim to learn vector representations of nodes in signed networks. However, existing algorithms only managed to embed networks into low-dimensional Euclidean spaces whereas many intrinsic features of signed networks are reported more suitable for non-Euclidean spaces. For instance, previous works did not consider the hierarchical structures of networks, which is widely witnessed in real-world networks. In this work, we answer an open question that whether the hyperbolic space is a good choice to accommodate signed networks and learn embeddings that can preserve the corresponding special characteristics. We also propose a non-Euclidean signed network embedding method based on structural balance theory and Riemannian optimization, which embeds signed networks into a Poincaré ball in a hyperbolic space. This space enables our approach to capture underlying hierarchy of nodes in signed networks because it can be seen as a continuous tree. We empirically compare our method against six Euclidean-based baselines in three tasks on seven real-world datasets, and the results show the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.