Abstract

This letter addresses an effective algorithm for target localization in multiple-input-multiple-output (MIMO) radar systems with widely separated antennas. The algorithm derived uses time-of-arrival (TOA) measurements from multiple transmitter-receiver pairs and is based on a hyperbolic method suitable for radiation source localization in passive sensor networks. It does not have the local convergence problem as the conventional iterative method. Some combinations of the derived algorithm and the conventional iterative method are presented. In a numerical example, it is shown that the proposed methods can achieve the Cramer-Rao lower bound (CRLB) in the range of moderate processed measurement noise and obtain the better localization performance as the number of transmitters and receivers increases. Furthermore, some remarks are made on the robustness of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.