Abstract
We study ℤd action on a set of equilibrium solutions of a lattice dynamical system, i.e., a system with discrete spatial variables, and the stability and hyperbolicity of the equilibrium solutions. Complicated behavior of ℤd-action corresponds to the existence of an infinite number of equilibrium solutions which are randomly situated along spatial coordinates. We prove that the existence of a homoclinic point of a ℤd-action implies complicated behavior, provided the hyperbolicity of the homoclinic solution with respect to the lattice dynamical system (this is a generalization of the previous work of the first two authors). Similar result holds for hyperbolic partially homoclinic and heteroclinic points. We show the equivalence of stability for any equilibrium solutions and the equivalence of hyperbolicity for homoclinic points under various norms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.