Abstract
Abstract Cast iron (CI) pipes were widely installed as water mains and service connections in the last century and still large numbers of CI pipes remain in service. However, many CI pipes are becoming aged and severely corroded, causing frequent pipe leaks and breaks. To better understand the failure mechanism of CI pipes, this paper provides an efficient numerical approach to analyse the behaviour of CI pipes under various loading conditions. The numerical investigation was realised by implementing a hyperbolic constitutive model (a simplified nonlinear stress-strain analysis) for CI materials into finite element analysis (FEA) in ABAQUS. Three-dimensional (3-D) FEAs were carried out for a series of uniaxial tensile and compressive tests, 3-point beam bending tests and ring bending tests on various CI pipe coupons. The stress-strain characteristics and load-deflection responses obtained from these numerical examples were validated by experimental results. The numerical results obtained from the proposed method are in good agreement with the measured data, which indicates that the mechanical performance of deteriorated CI pipes can be adequately modelled using the relatively simple nonlinear constitutive model implemented in 3-D FEA. As nonlinear behaviour has proven to be intrinsic to the widely used CI pipes, it is expected that the proposed 3-D FEA modelling technique will be of importance to the evaluation of the mechanical performance of CI pipes and, possibly, other CI structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.