Abstract

This work investigates the combined mode of hyperbolic heat conduction and radiation transfer in a one-dimensional axisymmetric cylinder filled with absorbing, emitting, and scattering media. The volumetric radiation is investigated thanks to the semianalytic solution of the matrix formulation of the spherical harmonics equations PN. The governing hyperbolic energy equation is solved using the finite volume method (FVM) with Roe’s correction of interface fluxes in order to enhance the performances of the method, and the lattice Boltzmann method (LBM) has been designed for comparisons. The effects of the parameters such as constant and spatial-dependent scattering albedos, temperature-dependent thermal conductivity, heat-generated sources, extinction, and the conduction–radiation parameter on both the temperature and heat flux distributions for steady and transient states within the medium are examined. The results of the present work are in excellent agreement with those available in the literature. The PN−FVM results are also compared to those obtained with the PN−LBM combination, and excellent agreement is obtained. These results show that the mentioned parameters have a significant effect on both the temperature profiles and the hyperbolic sharp wave front. This study also shows that the proposed layered approach is an efficient, fast, and accurate solution method for radiative analysis in inhomogeneous media, whereas the Roe’s correction of interface fluxes in the FVM is suitable to accommodate a thermal wave front in non-Fourier analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call