Abstract
We extend the Kreiss–Majda theory of stability of hyperbolic initial–boundary-value and shock problems to a class of systems, notably including the equations of magnetohydrodynamics (MHD), for which Majda's block structure condition does not hold: namely, simultaneously symmetrizable systems with characteristics of variable multiplicity, satisfying at points of variable multiplicity either a “totally nonglancing” or a “nonglancing and linearly splitting” condition. At the same time, we give a simple characterization of the block structure condition as “geometric regularity” of characteristics, defined as analyticity of associated eigenprojections. The totally nonglancing or nonglancing and linearly splitting conditions are generically satisfied in the simplest case of crossings of two characteristics, and likewise for our main physical examples of MHD or Maxwell equations for a crystal. Together with previous analyses of spectral stability carried out by Gardner–Kruskal and Blokhin–Trakhinin, this yields immediately a number of new results of nonlinear inviscid stability of shock waves in MHD in the cases of parallel or transverse magnetic field, and recovers the sole previous nonlinear result, obtained by Blokhin–Trakhinin by direct “dissipative integral” methods, of stability in the zero-magnetic field limit. We also discuss extensions to the viscous case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.