Abstract

A functional, transcriptome, and long noncoding RNAs (lncRNAs) expression analysis in the spinal cord of mice after hyperbaric oxygen (HBO) treatment. We aimed to explore the mechanism by which HBO treats spinal cord injury (SCI) at the level of lncRNAs. Immense amounts of research have established that HBO treatment promotes the recovery of neurological function after SCI. The mechanism of action remains to be clarified. High-throughput RNA sequencing, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to profile lncRNA expression and analyze biological function in the spinal cords of mice from sham-operated, SCI, and HBO-treated groups. The differential expression of lncRNA between the groups was assessed using real-time quantitative polymerase chain reaction. Differential expression across 577 lncRNAs was identified among the three groups. GO analysis showed that free ubiquitin chain polymerization, ubiquitin homeostasis, DNA replication, synthesis of RNA primer, single-stranded telomeric DNA binding, and alpha-amylase activity were significantly enriched. Kyoto Encyclopedia of Genes and Genomes enrichment analysis displayed that vitamin B6 metabolism, one carbon pool by folate, DNA replication, lysine degradation, beta-alanine metabolism, fanconi anemia pathway, and Notch signal pathway were the main pathways with enrichment significance. LncRNAs NONMMUT 092674.1, NONMMUT042986.2, and NONMMUT018850.2 showed significantly different expression between the SCI and the other two groups (P<0.05, <0.01). This study is the first to determine the expression profiles of lncRNAs in the injured spinal cord after HBO treatment. We identified several important dysregulated lncRNAs in this setting. These results help us better understand the mechanism by which HBO treats SCI and provide new potential therapeutic targets for SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.