Abstract

This study aimed to investigate the involvement of mitochondrial biogenesis, and determine the extent of fibroblast proliferation and cellular apoptosis, in the gingiva of patients who had undergone head and neck radiation, after receiving hyperbaric oxygen therapy (HBOT), in comparison with normal gingiva. A total of 16 patients who had undergone head and neck radiation with HBOT and six healthy subjects were included in the study. After the completion of radiation therapy, patients received HBOT at 2 ATA for 90 minutes per session, and for 20 sessions per patient. Samples of gingival tissues were then taken. The levels of: transforming growth factor beta (TGF-β); phospho-nuclear factor kappa-light-chain-enhancer of activated B cells (p-NFϰB); nuclear factor kappa-light-chain-enhancer of activated B cells (NFϰB); proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); phospho-dynamin-related protein 1 at ser616 (p-Drp1ser616); dynamin-related protein 1 (Drp1); Bcl-2-associated X-protein (Bax); and B-cell lymphoma 2 (Bcl-2) were determined using a Western blot. Independent t-test and Chi-squared tests were used in the study. There were no differences in the levels of TGF-β, p-NFϰB, NFϰB, p-Drp1ser616, Drp1, Bax and Bcl-2 between the two groups. However, the level of PGC-1α was greater in irradiated gingival tissues with HBOT than in the healthy gingiva. Radiation-induced impaired wound healing can be improved by HBOT as indicated by levels of apoptosis, mitochondrial dynamics, cell proliferation and inflammation in irradiated gingiva with HBOT to a similar level to normal healthy gingiva. These findings may occur through an increase in mitochondrial biogenesis following HBOT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call