Abstract

This study investigates the therapeutic potential of hyperbaric oxygen therapy (HBO) in reducing hypoxia and improving engraftment of intraportal islet transplants by promoting angiogenesis. Diabetic BALB/c mice were transplanted with 500 syngeneic islets intraportally and received six consecutive twice-daily HBO treatments (n = 9; 100% oxygen for 1 h at 2.5 atmospheres absolute) after transplantation. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) was used to assess new vessel formation at postoperative days (POD) 3, 7, and 14. Liver tissue was recovered at the same time points for correlative histology, including: hematoxylin and eosin, hypoxia-inducible factor (HIF1α), Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL), vascular endothelial growth factor (VEGF), and von Willebrand Factor immunohistochemistry. HBO therapy significantly reduced HIF-1α, TUNEL and VEGF expression in islets at POD 7. In the non-HBO transplants, liver enhancement on DCE MRI peaked at POD 7 consistent with less mature vasculature but this enhancement was suppressed at POD 7 in the HBO-treated group. The number of new peri-islet vessels at POD 7 was not significantly different between HBO and control groups. These results are consistent with a hyperbaric oxygen-mediated decrease in hypoxia that appeared to enhance vessel maturation in the critical days following intraportal islet transplantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.