Abstract

Radiosurgery is an important non-invasive procedure for the treatment of tumors and vascular malformations. However, in addition to killing target tissues, cranial irradiation induces damage to adjacent healthy tissues leading to neurological deterioration in both pediatric and adult patients, which is poorly understood and insufficiently treatable. To minimize irradiation damage to healthy tissue, not the optimal therapeutic irradiation dose required to eliminate the target lesion is used but lower doses. Although the success rate of irradiation surgery is about 95%, 5% of patients suffer problems, most commonly neurological, that are thought to be a direct consequence of irradiation-induced inflammation. Although no direct correlation has been demonstrated, the appearance and disappearance of inflammation that develops following irradiation commonly parallel the appearance and disappearance of neurological side effects that are associated with the neurological function of the irradiated brain regions. These observations have led to the hypothesis that brain inflammation is causally related to the observed neurological side effects. Studies indicate that hyperbaric oxygen therapy (HBOT) applied after the appearance of irradiation-induced neurological side effects reduces the incidence and severity of those side effects. This may result from HBOT reducing inflammation, promoting angiogenesis, and influencing other cellular functions thereby suppressing events that cause the neurological side effects. However, it would be significantly better for the patient if rather than waiting for neurological side effects to become manifest they could be avoided. This review examines irradiation-induced neurological side effects, methods that minimize or resolve those side effects, and concludes with a discussion of whether HBOT applied following irradiation, but before manifestation of neurological side effects may prevent or reduce the appearance of irradiation-induced neurological side effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.