Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease mainly caused by autoreactive T cells, followed by neuronal demyelination and disabling paralysis. Hyperbaric oxygen therapy (HBOT) is usually an adjunct to therapy for the treatment of neurological disorders. However, it remains still controversial whether HBOT is an effective option for the treatment of MS. Experimental autoimmune encephalomyelitis (EAE) is a well-studied mouse model investigated for the MS pathogenesis and the efficacy of the therapeutic intervention. Both encephalitogenic Th1 and Th17 are pivotal T cell subsets immunopathogenically producing several disease-initiating/modifying cytokines in the central nervous system (CNS) lesions to further exacerbate/ameliorate the progression of EAE or MS. However, it remains unclear whether HBOT modulates the context of T helper cell subsets in CNS lesions. We employed EAE in the presence of HBOT to assess whether disease amelioration is attributed to alterations of CNS-infiltrating T cell subsets. Our results demonstrated that semi-therapeutic HBOT significantly alleviated the progression of EAE, at least, via the suppression of Th17 response, the downregulation of CD4 T helper cells expressing GM-CSF or TNF-α, and the boosting of immunomodulatory IL-4 or IL-10-expressed CD4 T cells in the CNS lesions. Conclusively, HBOT attenuated EAE through the modulation of T cell responses in an earlier stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.