Abstract

It is accepted that gas bubbles grow from preexisting gas nuclei in tissue. The possibility of eliminating gas nuclei may be of benefit in preventing decompression sickness. In the present study, we examined the hypothesis that hyperbaric oxygen may replace the resident gas in the nuclei with oxygen and, because of its metabolic role, eliminate the nuclei themselves. After pretreatment with oxygen, prawns were 98% saturated with nitrogen before explosive decompression at 30 m/min. Ten transparent prawns were exposed to four experimental profiles in a crossover design: 1) 10-min compression to 203 kPa with air; 2) 10-min compression with oxygen; 3) 10-min compression with oxygen to 203 kPa followed by 12 min air at 203 kPa; and 4) 10 min in normobaric oxygen followed by compression to 203 kPa with air. Bubbles were measured after explosive decompression. We found that pretreatment with hyperbaric oxygen (profile C) significantly reduces the number of bubbles and bubble volume. We suggest that hyperbaric oxygen eliminates bubble nuclei in the prawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.