Abstract

Hyperbaric oxygen (HBO) improves angiogenesis. The effect of HBO on metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1), a pro‐angiogenic long non‐coding RNA, in cardiac myocyte‐derived exosomes and acute myocardial infarction (AMI) is unknown. We aimed to investigate whether MALAT1 is altered in cardiac myocyte‐derived exosomes in response to HBO as well as the molecular regulatory mechanisms of MALAT1 in cardiac myocytes treated with HBO. Cardiac myocytes were cultured, and HBO was applied at 2.5 atmosphere absolute in a hyperbaric chamber. Exosomes were extracted from the culture media. A rat model of AMI generated by the ligation of the left anterior descending artery was used. HBO significantly increased MALAT1 expression in cardiac myocytes and HBO‐induced MALAT1 and exosomes attenuated miR‐92a expression after myocardial infarction. Expression of krüppel‐like factor 2 (KLF2) and CD31 was significantly decreased after infarction and HBO‐induced exosomes significantly reversed the expression. Silencing of MALAT1 using MALAT1‐locked nucleic acid GapmeR significantly attenuated KLF2 and CD31 protein expression after infarction induced by HBO‐induced exosomes. HBO‐induced exosomes also decreased infarct size significantly. HBO‐induced exosomes from cardiac myocytes up‐regulate MALAT1 to suppress miR‐92a expression and counteract the inhibitory effect of miR‐92a on KLF2 and CD31 expression in left ventricular myocardium after myocardial infarction to enhance neovascularization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.