Abstract

Temporal summation of pain occurs when repeated stimuli become increasingly painful in spite of unchanged stimulus intensity. Summation can be quantified as the difference in pain between the first and the last stimulus in a train of stimuli. The aim of the study was to compare temporal summation of pain in normal skin with summation of pain in skin with primary and secondary hyperalgesia evoked by a heat injury. A heat injury was produced on the crus of 12 volunteers with a 50×25 mm thermode (47°C, 7 min). Measurements were made before, and 0, 1, 2, and 4 h after the heat injury, in three areas: primary and secondary mechanical hyperalgesia induced by the heat injury, and in a mirror image of the injury on the opposite leg. Temporal summation of pain was induced by repeated electrical stimuli (five stimuli at 2 Hz) and assessed by visual analog scale (VAS). Primary hyperalgesia was evaluated by von Frey hairs and electrical stimuli, and the areas of secondary hyperalgesia with a rigid von Frey hair (314 mN). Significant primary ( P<0.000001) and secondary ( P<0.00006) mechanical hyperalgesia were evoked by the heat injury. The pain threshold to single electrical stimuli was reduced within the injury ( P<0.03), but not outside. The pain responses to single and repeated electrical stimuli were not significantly altered by the injury. Temporal summation of pain occurred in 418 stimulus trains out of 576 (73%), but no significant changes in summation developed in skin with primary or secondary mechanical hyperalgesia compared with normal skin (baseline measurements). Temporal summation at high stimulus intensities was more pronounced than at lower intensities ( P<0.0002). We found no correlation between either temporal summation and area of secondary hyperalgesia, or temporal summation and pain intensity during the induction of heat injury. We conclude that the development of primary and secondary mechanical hyperalgesia after heat injury in man was not associated with changes in temporal summation of painful electrical stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call