Abstract

The emergence of hyperactivity in the form of elevated spontaneous firing rates after cochlear trauma has been well documented in a number of central auditory structures, including the auditory cortex, inferior colliculus, and dorsal subdivision of the cochlear nucleus. This hyperactivity is of interest as a possible neural substrate of tinnitus. Whether the ventral subdivision of the cochlear nucleus shows hyperactivity has never been investigated despite the fact that, like the dorsal division, it also receives direct input from the damaged cochlea and supplies major ascending inputs to brainstem and midbrain auditory centers. We investigated spontaneous neuronal firing rates in the ventral cochlear nucleus in a guinea pig model of cochlear trauma in which we have shown that hyperactivity consistently develops in the inferior colliculus (Mulders and Robertson, 2009). The mean spontaneous firing rates of ventral cochlear nucleus neurons was significantly elevated compared to sham controls. This hyperactivity was more evident in primary-like and onset categories of neurons. Hyperactivity in the ventral subdivision of cochlear nucleus therefore needs to be considered in relation to neural models of the genesis of tinnitus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call