Abstract

The best known method for optimally computing parameters from noisy data based on geometric con- straints is maximum likelihood (ML). This paper reinvestigates for further improving the accuracy of ML. In the past, only the case of a single scalar constraint was studied. In this paper, we extend it to multiple constraints given in the form of vector equations. By detailed error analysis, we illuminate the existence of a term that has been ignored in the past. Doing simulation experiments of ellipse fitting, fundamental matrix, and homography computation, we show that the new term does not effectively affect the final solution. However, we show that our hyperaccurate correction is even superior to hyper-renormalization, the latest method regarded as the best fitting method, but that the iterations of ML computation do not necessarily converge in the presence of large noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.