Abstract

Network embedding aims to obtain a low-dimensional representation of vertices in a network, meanwhile preserving structural and inherent properties of the network. Recently, there has been growing interest in this topic while most of the existing network embedding models mainly focus on normal networks in which there are only pairwise relationships between the vertices. However, in many realistic situations, the relationships between the objects are not pairwise and can be better modeled by a hyper-network in which each edge can join an uncertain number of vertices. In this paper, we propose a deep model called Hyper2vec to learn the embeddings of hyper-networks. Our model applies a biased \(2^{nd}\) order random walk strategy to hyper-networks in the framework of Skip-gram, which can be flexibly applied to various types of hyper-networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.