Abstract
In this paper, we present a new decoding algorithm for the Wyner-Ziv (WZ) video coding scheme based on turbo codes. In this scheme, a video frame is encoded using a turbo code, and only a subset of the parity bits are sent to the decoder. At the decoder, the temporal correlation of the video sequence is exploited by using the previous frame as noisy side information (SI) for the current frame. However, there is a mismatch between the SI, which is available as pixel values, and the binary code bits. Previous implementations of the decoder use suboptimal approaches that convert pixel values to soft information for code bits. We present a new decoding algorithm for this application based on decoding on a hyper-trellis, in which multiple states of the original code trellis are combined. We show that this approach significantly improves performance without changing the complexity of the decoder. We also introduce a new technique for the WZ decoder to exploit the spatial correlation within a frame without requiring transform-domain encoding at the encoder, thereby reducing its complexity. Simulation results for fixed-rate transmission show a 9-10-dB improvement in the peak signal-to-noise ratio when compared to a WZ video codec that does bitwise decoding and utilizes only the temporal correlation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.