Abstract
Hyper-stretchable self-powered sensors with high sensitivity and excellent stability using low-cost, printable, organic nanomaterials are attractive for immense applications. Here we present self-similar piezoelectric nano/microfibers for a hyper-stretchable self-powered sensor that demonstrates high stretchability (> 300%), low detection limit (0.2mg), and excellent durability (> 1400 times at strain 150%). A proposed helix electrohydrodynamic printing technique (HE-Printing) in combination with in-surface self-organized buckling is used to fabricate aligned self-similar poly[vinylidene fluoride] (PVDF) nano/microfibers with in situ mechanical stretch and electrical poling to produce excellent piezoelectric properties. The hyper-stretchable self-powered sensors have shown repeatable and consistent electrical outputs with detection limit an order of magnitude smaller than the other stretchable sensors. Additionally, such sensors can simultaneously measure the own status and the extra multiply physical quantities, such as lateral pressure, impulse rate and applied strain. The high sensitivity can be further utilized to remotely detect human motion in addition to sensing a piece of paper with 1mm × 1mm. Further the fiber-based sensors can avoid the catastrophic collapse or wrinkling of serpentine film-based structure during stretching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.