Abstract

Today, University Timetabling problems are occurred annually and they are often hard and time consuming to solve. This paper describes Hyper Heuristics (HH) method based on Great Deluge (GD) and its variants for solving large, highly constrained timetabling problems from different domains. Generally, in hyper heuristic framework, there are two main stages: heuristic selection and move acceptance. This paper emphasizes on the latter stage to develop Hyper Heuristic (HH) framework. The main contribution of this paper is that Great Deluge (GD) and its variants: Flex Deluge(FD), Non-linear(NLGD), Extended Great Deluge(EGD) are used as move acceptance method in HH by combining Reinforcement learning (RL).These HH methods are tested on exam benchmark timetabling problem and best results and comparison analysis are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.