Abstract
Neuropsychiatric symptoms in patients with Alzheimer's disease (AD) are presented as early as the mild cognitive impairment (MCI) stage. However, it remains unclear whether separate neuronal populations encode distinct aspects of the neuropsychiatric symptoms and drive them differently. Here, we report that pyramidal tract (PT) neurons projecting to the thalamus, but not to the pons or medulla, in the medial prefrontal cortex (mPFC) of the mouse model of AD show increased excitability, which is associated with increased irritability and aggressivity. Decreased Kv6.3 in corticothalamic PT neurons contributes to hyper-excitability, which is tightly associated with aggressive behaviors. Overexpression of Kv6.3 not only prevents abnormal excitability of corticothalamic PT neurons in mPFC, but also rescues aggressive behaviors of 3xTg model mice. Our study provides causal evidence for the contribution of corticothalamic PT neurons to irritability in the 3xTg model of AD and reveals circuit mechanisms used by PT neurons to regulate neuropsychiatric symptoms in AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.