Abstract

We define a new dilaton Weyl multiplet of mathcal{N} = 2 conformal supergravity in four dimensions. This is constructed by reinterpreting the equations of motion of an on-shell hypermultiplet as constraints that render some of the fields of the standard Weyl multiplet composite. The independent bosonic components include four scalar fields and a triplet of gauge two-forms. The resulting, so-called, hyper-dilaton Weyl multiplet defines a 24 + 24 off-shell representation of the local mathcal{N} = 2 superconformal algebra. By coupling the hyper-dilaton Weyl multiplet to an off-shell vector multiplet compensator, we obtain one of the two minimal 32 + 32 off-shell multiplets of mathcal{N} = 2 Poincaré supergravity constructed by Müller in 1986. On-shell, this contains the minimal mathcal{N} = 2 Poincaré supergravity multiplet together with a hypermultiplet where one of its physical scalars plays the role of a dilaton, while its three other scalars are dualised to a triplet of real gauge two-forms. Interestingly, a BF-coupling induces a scalar potential for the dilaton without a standard gauging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.