Abstract
Efficient treatment and utilization of organic pollutants in water are difficult for environmental remediation. A new hyper-cross-linked polymer (PIn-HCP) with high specific surface area was constructed via polyindole (PIn) as building blocks. Rich pore structures and abundant adsorption sites in PIn-HCP were obtained by hyper-cross-linking. The specific surface area of PIn-HCP was enhanced from 14.85 to 431.89 m2/g. The adsorption capacities of PIn-HCP-2 for methylene blue (MB), methyl orange (MO), rhodamine B (RhB), and tetracycline hydrochloride (TH) are 902.0, 275.2, 16.0, and 0.0 mg/g, respectively. PIn-HCP also realized selective adsorption of MB, which can better separate MB/RhB and MB/TH. MB is adsorbed onto PIn-HCP via a synergistic mechanism including π-π stacking, electrostatic interaction, cation-π interaction, hydrogen bonding interaction, and ion exchange. The huge conjugated structure of PIn promotes PIn-HCP to selectively adsorb MB. In addition, PIn-HCP also retains the electrochemical properties of PIn. MB can improve the specific capacitance of PIn-HCP up to five times, and it has potential as a supercapacitor electrode. PIn-HCP offers a promising and practical solution for the efficient treatment and utilization of organic pollutants in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.