Abstract

A new hyper-branched surface in which three species of architectures were constructed as stem chain, branched stem and twig chain-grafted branched chain of poly(poly(ethylene glycol)methacrylate) (poly(PEGMA)) by photo-polymerization using dithiocarbamyl group (DC) as iniferter was prepared and characterized. For these surfaces, radical copolymerization of styrene and an iniferter-activated chain that was previously synthesized was performed for using as base materials for surface coating. On a DC-activated surface, hyper-branched poly(PEGMA) was introduced by photo-polymerization and dithiocarbamylation. All modified surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Our results demonstrated that a highly hyper-branched graft architecture of poly(PEGMA) can be constructed on PU surface by photo-polymerization using dithiocarbamyl group as iniferter, in which first, second and third generation gave stem chain, branched chain and twig chain of poly(PEGMA), respectively. Our hyper-branched surfaces could be regulated by photo-irradiation time and might be controlled by feed amounts or other reaction conditions. This highly dense architecture of PEG chain with hydrophilicity and chain mobility, grafted on surface, is expected to be effectively utilized in bio-implantable substrates or micro- or nano-patterned surfaces for immobilization of bioactive molecules in biomedical fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.