Abstract

Robust planning under uncertainty is critical for robots in uncertain, dynamic environments, but incurs high computational cost. State-of-the-art online search algorithms, such as DESPOT, have vastly improved the computational efficiency of planning under uncertainty and made it a valuable tool for robotics in practice. This work takes one step further by leveraging both CPU and GPU parallelization in order to achieve real-time online planning performance for complex tasks with large state, action, and observation spaces. Specifically, Hybrid Parallel DESPOT (HyP-DESPOT) is a massively parallel online planning algorithm that integrates CPU and GPU parallelism in a multi-level scheme. It performs parallel DESPOT tree search by simultaneously traversing multiple independent paths using multi-core CPUs; it performs parallel Monte Carlo simulations at the leaf nodes of the search tree using GPUs. HyP-DESPOT provably converges in finite time under moderate conditions and guarantees near-optimality of the solution. Experimental results show that HyP-DESPOT speeds up online planning by up to a factor of several hundred in several challenging robotic tasks in simulation, compared with the original DESPOT algorithm. It also exhibits real-time performance on a robot vehicle navigating among many pedestrians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.