Abstract

We present HylleraasMD (HyMD), a comprehensive implementation of the recently proposed Hamiltonian formulation of hybrid particle-field molecular dynamics. The methodology is based on a tunable, grid-independent length-scale of coarse graining, obtained by filtering particle densities in reciprocal space. This enables systematic convergence of energies and forces by grid refinement, also eliminating nonphysical force aliasing. Separating the time integration of fast modes associated with internal molecular motion from slow modes associated with their density fields, we enable the first time-reversible, energy-conserving hybrid particle-field simulations. HyMD comprises the optional use of explicit electrostatics, which, in this formalism, corresponds to the long-range potential in particle-mesh Ewald. We demonstrate the ability of HyMD to perform simulations in the microcanonical and canonical ensembles with a series of test cases, comprising lipid bilayers and vesicles, surfactant micelles, and polypeptide chains, comparing our results to established literature. An on-the-fly increase of the characteristic coarse-grain length significantly speeds up dynamics, accelerating self-diffusion and leading to expedited aggregation. Exploiting this acceleration, we find that the time scales involved in the self-assembly of polymeric structures can lie in the tens to hundreds of picoseconds instead of the multimicrosecond regime observed with comparable coarse-grained models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call