Abstract

Earth is a building material with low carbon emissions compared to conventional concrete or fired bricks. Earthen materials have an excellent capacity to regulate indoor hygrothermal conditions allowing for a better comfort with reduced heating and cooling needs during the life cycle of the building. The present paper presents a theoretical framework to investigate the hygro-thermal response of earthen materials by coupling the principles of unsaturated soil mechanics combined with the thermodynamics of porous media. The degree of coupling between the two variables (temperature and relative humidity or water content) depends on the values of the water and vapour permeability functions which, in turns, depend on the water retention curve of the material. Results shows that, in the hygroscopic domain, the hydro-thermal coupling is more influenced by the saturated permeability than by the vapour diffusion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.