Abstract
The aeronautic structures normally operate under high levels of hygroscopic moisture from the surrounding environment at different temperature ranges while in service. Under such conditions, the behavior of laminate composite submitted to cyclic or static loadings can change drastically. In order to understand those effects in stitched fabrics, fatigue tests with open-hole specimens were carried out with a stress ratio of R = −1 and R = 0.1. The specimens were fatigue-tested as provided (environmental conditions) and after exposed to hygrothermal weathering conditions. Based on evidences from recent studies available in the open literature, e.g., effect of water diffusion on epoxy matrix, the overall results indicated a significant reduction in stiffness after the specimens are exposed to hygrothermal effects. The reduction in matrix stiffness, in this case, enhanced the fatigue strength in tension–tension load (R = 0.1) when compared to the specimens in normal conditions. The opposite occurs for the specimens loaded with stress ratio of R = −1, in which the delamination mechanisms changed during the loading reversion from tension to compression that promoted early delamination. Therefore, this process reduced the fatigue life of the specimens under hygrothermal condition. Then, by fractographic investigation, it was verified fracture patterns that regard to mode II damage in R = −1, in which mode II fracture toughness is known to decrease in the presence of water molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.