Abstract

Environmental context. The marine environment covers 71% of the Earth’s surface, and accounts for most of the planet’s cloud cover. Water droplets in these clouds all form on pre-existing marine aerosol particles. The number, size and composition of these particles determine the cloud droplet size and consequently, the cloud’s light scattering and precipitation behaviour. Marine aerosols, therefore, have a major influence on the planet’s radiation balance and climate. The origin of marine aerosols is still not completely resolved. The newly developed VH-TDMA technique has been applied to marine aerosols that come from the Southern Ocean. The technique enabled new insights into the composition and structure of these aerosols. It has been found that organic matter constitutes 20–40% of these particles, which suppresses their hygroscopic growth. Abstract. Simultaneous measurement of particle hygroscopic and volatile properties was performed using a VH-TDMA on both Aitken and accumulation mode particles. In addition, deliquescence measurements at different thermodenuder temperatures were also performed. The measurements were part of the P2P campaign which took place in February 2006 at the Cape Grim monitoring station in Tasmania, Australia. During baseline conditions, there was often a volatilisation step that occurred below 125°C in the volatility scans, where up to 25% of the volume is lost. Analysis of the changes in growth as this took place indicates that different substances are responsible for this volatilisation on different days – ammonium nitrate, sulfuric acid, or a volatile non-hygroscopic organic. The major volatilisation in all cases occurred in the temperature range ~140–200°C, which is taken to indicate the presence of ammonium sulfate or ammonium bisulfate. A degree of growth suppression is generally evident before this volatilisation, which indicates that a non-hygroscopic material with a similar volatility to ammonium sulfate/bisulfate may be present, which cannot be distinguished in the volatility scans. Organic matter was typically present at around ~20–40% for these particles. When Aitken and accumulation mode particles were measured on the same day, it was found that the organic content of the smaller particles tended to be higher than the larger particles by roughly 20 percentage points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.