Abstract
In this article, we propose an efficient circuit reliability analysis infrastructure utilizing on-demand transistor-accurate fault injection based on workload-specific distributional properties. A novel two-phase approach is developed to achieve circuit-level accuracy, via careful transistor-level precharacterization, and gate-level efficiency, via fast runtime fault generation. A time-consuming circuit characterization is performed once, and the result of the precharacterization is used multiple times at runtime to inject faults. Also, novel fault probability estimation and fault injection methods are developed. Fault probabilities are computed based on workload-specific voltage/temperature distribution, and faults are injected efficiently by scaling the computed fault probabilities. We demonstrate the proposed methodology on an OpenSPARC core targeting an implementation on a 32-nm technology node. Analysis indicates that the injector computes the system failure rate with 0.1-ms simulation overhead per injection while having circuit-level accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.