Abstract
BackgroundHydroxytyrosol (HT), a major phenolic antioxidant found in olive oil, can afford protection from oxidative stress in several types of non-tumoral cells, including chondrocytes. Autophagy was recently identified as a protective process during osteoarthritis (OA) development and critical for survival of chondrocytes. Therefore we have investigated the possibility to modulate chondrocyte autophagy by HT treatment. MethodsDNA damage and cell death were estimated in human C-28/I2 and primary OA chondrocytes exposed to hydrogen peroxide. Autophagic flux and mitophagy were monitored by measuring levels and location of autophagy markers through western blot, immunostaining and confocal laser microscopy. Late autophagic vacuoles were stained with monodansylcadaverine. The involvement of sirtuin 1 (SIRT-1) was evaluated by immunohistochemistry, western blot and gene silencing with specific siRNA. ResultsHT increases markers of autophagy and protects chondrocytes from DNA damage and cell death induced by oxidative stress. The protective effect requires the deacetylase SIRT-1, which accumulated in the nucleus following HT treatment. In fact silencing of this enzyme prevented HT from promoting the autophagic process and cell survival. Furthermore HT supports autophagy even in a SIRT-1-independent manner, by increasing p62 transcription, required for autophagic degradation of polyubiquitin-containing bodies. ConclusionsThese results support the potential of HT as a chondroprotective nutraceutical compound against OA, not merely for its antioxidant ability, but as an autophagy and SIRT-1 inducer as well. General significanceHT may exert a cytoprotective action by promoting autophagy in cell types that may be damaged in degenerative diseases by oxidative and other stress stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - General Subjects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.