Abstract
The success of a dental implant relies on the presence of an optimal alveolar ridge. The aim of this study was to fabricate HPMC crosslinked chitosan based scaffolds for alveolar bone repair. Our results indicated that HPMC crosslinked CH/BG foams presented better morphological structure (132–90.5 μm) and mechanical responses (0.451 MPa with 100 mg BG) as confirmed by SEM analysis and fatigue testing respectively. Cytotoxicity analysis at day 2, 4 and 8 demonstrated that all composites were non-toxic and supported cellular viability. Calcein AM/propidium iodide staining, Hoechst nuclear staining and cell adhesion assay reiterated that scaffolds supported pre-osteoblast cell growth, adhesion and proliferation. Differentiation potential of pre-osteoblast cells was enhanced as confirmed by alkaline phosphate assay. Furthermore, loss of S. aureus viability as low as 35% was attributed to synergistic effects of components. Overall, our results suggest that HPMC crosslinked scaffolds are potential candidates for alveolar bone repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.