Abstract
In this work, hydroxypropyl-β-cyclodextrin-polyurethane magnetic nanoconjugates/reduced graphene oxide (HPMNPU/GO) supramolecules were prepared. The adsorbent was characterized using FTIR and SEM. The adsorbent was evaluated for its efficiency to remove Cr6+ and Pb2+ from aqueous solutions through batch adsorption studies following a Definitive Screening Design (DSD). Effects of solution pH, contact time, adsorbent dosage, initial metal concentration, ionic strength, GO/NC ratio and temperature on Cr 6+ and Pb 2+ adsorption were investigated. Optimization of the adsorption process was done using a desirability function of the Design Expert V11 software. A good agreement between experimental and predicted data proved the efficiency of this model for prediction of real optimum point. The batch experiments implied that the pseudo-second-order model (lowest sum of square error (SSE) values and correlation coefficients (R2) > 0.999) was better to describe the adsorption kinetics of Cr6+ and Pb2+ onto the HPMNPU/GO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.