Abstract

Novel aqueous polymeric two-phase systems are described. These systems are formed by mixing hydroxypropyl cellulose (molecular mass 100,000, trade name Klucel L) with poly(ethylene glycol)-copoly(propylene glycol) copolymer [molecular mass 6,500, poly(propylene glycol) content 50% w/w, trade name Pluronic P105], in a saline buffer. The phase diagram was measured and the interfacial tensions, phase separation times, and lower phase viscosities of three phase systems having constant Pluronic P105 concentration but varying in Klucel L concentration were determined. The partition behavior of a representative cell, bacterium, and protein and the affinity ligand-mediated alteration in the partition behavior of a protein from a yeast extract protein mixture were also characterized. The results suggest that Klucel L/Pluronic P105 phase systems may be cost-effective substitutes for, or complements to, existing aqueous polymeric phase systems. The physical characterization and representative partition data reported here should facilitate application of these new systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.