Abstract

AbstractThe hydrodemethylation reaction of 3,4‐xylenol on micro/mesoporous catalysts with active component TiO2 was studied. TiO2/YM‐m and TiO2/YM‐c micro/mesoporous materials were, respectively, derived by loading TiO2 with the composition and mechanical mixing of Al‐MCM‐41 and HY zeolite. The effect of the bifunctional catalysts on the catalytic performance of hydroxymethylation of xylenol before and after the introduction of Al‐MCM‐41 into HY was investigated in this study. Compared with TiO2/Y catalyst, TiO2/MCM‐41, TiO2/YM‐m, and TiO2/YM‐c have higher selective dealkylation products, especially the selectivity of cresol. This is attributed to the addition of Al‐MCM‐41 mesoporous molecular sieve to eliminate diffusion limitation. Compared with TiO2/YM‐m catalyst, the TiO2/YM‐c composite with Al‐MCM‐41 coated structure grown on the surface of HY crystals has better catalytic conversion activity and ability to inhibit secondary reactions. This is because of the existence of the special “coating” of HY zeolite, which eliminates the diffusion limitation and prevents the product and the reaction intermediate from entering the micropores for multiple reactions, thereby reducing the occurrence of side reactions. Meanwhile, TiO2/YM‐c catalyst has the best demethylation performance under the optimal reaction conditions, the conversion of 3,4‐xylenol, the selectivity to phenol, and m‐cresol were 52.15%, 62.17%, and 36.32%, respectively. And the TiO2/YM‐c catalyst has good stability within 80 h of reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.