Abstract

Natural products with the 3,6-diene-2,5-diketopiperazine core are widely distributed in nature; however, the biosynthetic mechanism of 3,6-diene-2,5-diketopiperazine in fungi remains to be further elucidated. Through heterologous expression and biochemical investigation of an FeII /2-oxoglutarate-dependent oxidase (AspE) and a heme-dependent P450 enzyme (AspF), we report that AspE, AspF and subsequent dehydration account for the formation of the 3,6-diene-2,5-diketopiperazine substructure of brevianamide K from Aspergillus sp. SK-28, a symbiotic fungus of mangrove plant Kandelia candel. More interestingly, in-depth investigation of the enzymatic mechanism showed that AspE promotes hydroxylation of brevianamide Q with unprecedented stereoinversion through hydrogen atom abstraction and water nucleophilic attack from the opposite face of the resultant iminium cation intermediate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call