Abstract

Adsorption of water on a metal-supported sheet-like silica film was studied by infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). As expected, the silica surface is essentially hydrophobic. Hydroxo species, primarily in the form of isolated silanols (Si–OH), were observed only upon water condensation at low temperatures and subsequent heating above 200 K. The amounts of silanol species account for less than a few percent of the surface Si atoms, and they are found to be thermally stable up to 900 K. Isotopic experiments showed that hydroxyls form almost exclusively from the adsorbed water molecules and do not undergo scrambling with the lattice oxygen atoms upon heating. Steps within the silica sheet, due to a terraced topography and/or the presence of “holes”, are proposed as the active sites for hydroxylation. The acidic properties of silanol species were studied with CO and NH3 as probe molecules. In the case of ammonia, an H–D exchange reaction was observed...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.