Abstract

BackgroundOxidative metabolism, resulting in the formation of hydroxylated polybrominated diphenyl ether (PBDE) metabolites, may enhance the neurotoxic potential of brominated flame retardants.ObjectiveOur objective was to investigate the effects of a hydroxylated metabolite of 2,2′,4,4′-tetra-bromodiphenyl ether (BDE-47; 6-OH-BDE-47) on changes in the intracellular Ca2+ concentration ([Ca2+]i) and vesicular catecholamine release in PC12 cells.MethodsWe measured vesicular catecholamine release and [Ca2+]i using amperometry and imaging of the fluorescent Ca2+-sensitive dye Fura-2, respectively.ResultsAcute exposure of PC12 cells to 6-OH-BDE-47 (5 μM) induced vesicular catecholamine release. Catecholamine release coincided with a transient increase in [Ca2+]i, which was observed shortly after the onset of exposure to 6-OH-BDE-47 (120 μM). An additional late increase in [Ca2+]i was often observed at ≥1 μM 6-OH-BDE-47. The initial transient increase was absent in cells exposed to the parent compound BDE-47, whereas the late increase was observed only at 20 μM. Using the mitochondrial uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and thapsigargin to empty intracellular Ca2+ stores, we found that the initial increase originates from emptying of the endoplasmic reticulum and consequent influx of extracellular Ca2+, whereas the late increase originates primarily from mitochondria.ConclusionThe hydroxylated metabolite 6-OH-BDE-47 is more potent in disturbing Ca2+ homeostasis and neurotransmitter release than the parent compound BDE-47. The present findings indicate that bioactivation by oxidative metabolism adds considerably to the neurotoxic potential of PBDEs. Additionally, based on the observed mechanism of action, a cumulative neurotoxic effect of PBDEs and ortho-substituted polychlorinated biphenyls on [Ca2+]i cannot be ruled out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.