Abstract

Calcium phosphate (CaP) has been used as the vector for gene transfection in the past three decades with the characteristics of excellent biocompatibility and biodegradability. However, clinical application of calcium phosphate is still not popular due to poor-controlling of DNA/CaP complex preparation and its low transfection efficiency. In this study, block copolymer (PLGA–mPEG) assisted synthesis of hydroxylapatite (HAP) nanorods and DNA post-adsorbing method for transfection in vitro have been reported. By hydrothermal treatment, HAP nanorods with relatively uniform sizes of ∼100 nm in length and ∼25 nm in diameter and high crystallinity were prepared, which were characterized by TEM, XRD and FTIR measurements. In the presence of Ca 2+ (0.2 mol/L), HAP nanorods showed ultra-high DNA loading capacity, which was significantly enhanced by one or two magnitude compared with the recently reported high loading capacity mesoporous silica vectors. HAP nanorods, therefore, have a great potential as the gene vector to deliver DNA into the cells effectively and safely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.