Abstract
Recently, many reagents have been introduced to accelerate the formation of highly reactive intermediate Mn species from permanganate (KMnO4), thereby improving the oxidation activity of KMnO4 towards pollutants. However, most studies have mainly focused on sulfur-containing reducing agents (e.g., bisulfite and sodium sulfite), with little attention paid to nitrogen-containing reducing agents. This study found that hydroxylamine (HA) and hydroxylamine derivatives (HAs) can facilitate KMnO4 in pollutant removal. Taking sulfamethoxazole (SMX) as a target contaminant, the effect of pH, SMX concentration, KMnO4 and HA dosages, and the molar ratio of HA and KMnO4 on the degradation of SMX in the KMnO4/HA process was systematically investigated. Quenching experiments and probe analysis revealed MnO2-catalyzed KMnO4 oxidation, Mn(III) and reactive nitrogen species as the primary active species responsible for SMX oxidation in the KMnO4/HA system. Proposed transformation pathways of SMX in the KMnO4/HA system mainly involve hydroxylation and cleavage reactions. The KMnO4/HA system was more conducive to selective oxidation of SMX, 2,4-dichlorophenol, and several other pollutants, but reluctant to bisphenol S (BPS). Overall, this study proposed an effective system for eliminating pollutants, while providing mechanistic insight into HA-driven KMnO4 activation for environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.