Abstract
Heterogeneous Fenton-like oxidation is a promising method in dealing with organic pollutants. So far, the interaction of the nano micro-electrolysis material (nMET) and hydroxylamine (HA) Fenton-like system still needs to be explored. A HA-favored degradation of rhodamine B (Rh B) with nMET/H2O2 system was investigated in this paper. The influences of various experimental factors, as well as reuse and universal adaptability of the catalyst and the intermediates were comprehensively assessed. Under the near-neutral pH condition, the degradation efficiency of Rh B was up to 100% with H2O2 (1 mM), HA (0.1 g/L) and nMET (0.03 g/L) at 8 min, which was ascribed to the iron ions leaching and accelerated Fe(III)/Fe(II) recycle by the promotion of HA. As confirmed by the Electron paramagnetic resonance (EPR) and quenching experiments tests, singlet oxygen (1O2) and hydroxyl radical (•OH) were the predominant reactive oxygen species (ROS) for the degradation of Rh B molecules in nMET/H2O2/HA system, then the potential mechanism of ROS generation and pathway of Rh B degradation were proposed. This study furnishes a novel perspective for ROS generation from the micro-electrolysis function, proving that nMET is feasible for the efficient degradation of organic contaminants in heterogeneous Fenton-like system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.