Abstract

This work investigates spatial and temporal distributions of hydroxyl, OH, in laser-plasma in laboratory air at standard ambient temperature and pressure. Of interest are determination of temperature and density of OH and establishment of a correlation of molecular OH emission spectra with shadow graphs for time delays of 50 to 100 μs, analogous to previous work on shadow graph and emission spectroscopy correlation for cyanide, CN, in gas mixtures and for time delays of the order of 1 μs. Wavelength- and sensitivity-corrected spatiotemporal data analysis focuses on temperature inferences using molecular OH emission spectroscopy. Near-IR radiation from a Q-switched laser device initiates optical breakdown in laboratory air. The laser device provides 6 ns, up to 850 milli Joule, pulses at a wavelength of 1064 nm, and focal irradiance in the range of 1 to 10 terawatt per centimeter-squared. Frequency doubled beams are utilized for capturing shadow graphs for visualization of the breakdown kernel at time delays in the range of 0.1 to 100 μs. OH emission spectra of the laser plasma, spatially resolved along the slit dimension, are recorded in the wavelength range of 298 nm to 321 nm, and with gate widths adjusted to 10 μs for the intensified charge-coupled device that is mounted at the exit plane of a 0.64 m Czerny-Turner configuration spectrometer. Diatomic OH signals occur due to recombination of the plasma and are clearly distinguishable for time delays larger than 50 μs, but are masked by spectra of N2 early in the plasma decay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call