Abstract

Plasma from hemodialysis patients evoked weak photon emissions (chemiluminescence) in a characteristic emission spectrum with a peak at 430 nm, attributed to attack by hydroxyl radicals generated from the iron-catalyzed breakdown of hydrogen peroxide (Fenton reaction), whereas plasma from normal healthy subjects showed a rather weak red chemiluminescence peak at around 680 nm, similar to that resulting from attack by hydroxyl radicals. However, the addition of hydrogen peroxide in the absence of divalent irons induced almost the same red chemiluminescent emission spectrum in both plasmas. The HPLC-gel-filtration chromatography carried out with both plasmas revealed that a primary emitter evoking a peak emission at 430 nm was located in the fraction of lower-molecular-mass substances in fractionated plasma from hemodialysis patients. In contrast, the elution peaks evoking red chemiluminescence with the addition of hydrogen peroxide were mainly observed for the higher-molecular-mass fraction, as determined by gel chromatography of both plasmas. Therefore, the observation of a chemiluminescence peak at 430 nm, induced by the generation of hydroxyl radicals, correlated well with chemiluminescent emissions in plasma samples from patients with chronic renal failure. Spectral analyses of clinical samples that show weak chemiluminescence by forced oxidation by such an active oxygen may provide a new and more sensitive method for diagnosing metabolic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.