Abstract

The synthesis of graphene quantum dots-like enriched with specific oxygenated groups (o-GQDs) exhibiting great catalytic performance offers a promising tool for diagnosis and biomedicine, but introducing specific oxygen groups remains a challenge. Here, we propose a mild synthetic protocol for producing regulated fluorescence emission (from blue to yellow) carbonyl functionalized GQDs with double catalytic function through Fe3O4-catalyzed hydroxyl radical (·OH) oxidation the precursors like graphene oxide, polyaniline (PANI) and polydopamine (PDA). The method can be carried out at room temperature than the traditional high-temperature oxidation in concentrated acid. Interestingly, o-GQDs exhibit excellent peroxidase (POD)- and ascorbate oxidase-like activity. XPS characterization showed a significant increase in carbonyl content in o-GQDs compared to the precursor, even a 14-fold increase in blue-emitting iron-doped GQDs (b-Fe-GQDs). The introduction of Fe3O4 during the synthesis process results in a minor degree of Fe doping, which enhances the catalytic activity of b-Fe-GQDs through coordination with N. Based on this feature, highly sensitive single-signal and ultra-selective dual-signal methods for alkaline phosphatase detection were developed. This low cost and safe synthesis strategy paves the way for practical usage of o-GQDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.