Abstract

The decay of OH concentration following photolysis of room-temperature vapor-phase hydrogen peroxide is studied as a function of photolysis fluence at 266 nm in an open air environment. The rate of decay is found to increase with increasing photolysis fluence, i.e., with increasing number of photodissociated H2O2(g) molecules. Single-exponential functions approximate the OH concentration decay rather well, even for higher photolysis levels, and the decay time is shown to be inversely proportional to the H2O2(g) concentration. For fluences of about 450 mJ/cm2 the difference between a single-exponential decay and measured data is becoming evident after approximately 150 μs. Calculations based on a chemical kinetics model agree well with experimental data also for times >150 μs. By combining the model with measurements, the actual photolysis levels used in experiments are estimated. The best fit between measured data and the model suggests that about 1.1% of the H2O2(g) molecules are dissociated with a photolysis fluence of ∼450 mJ/cm2, in reasonable agreement with a Beer–Lambert based estimation. Excitation scans did not unfold any differences between OH spectra recorded at different photolysis fluences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.